
Webseclab Security Education Workbench

Elie Bursztein, Baptiste Gourdin, Celine Fabry, Jason Bau, Gustav Rydstedt, Hristo Bojinov, Dan Boneh, John C. Mitchell

Stanford University

elie,bgourdin,jbau,rydstedt,hristo,dabo,mitchell@cs.stanford.edu

Abstract

We have developed and tested a virtual-machine-based
web-application security student laboratory, Webseclab,
comprising a LAMP (Linux, Apache, MySQL, PHP)
stack, a variety of development tools, and the three most
popular browsers for the Linux platform. This envi-
ronment, tested in weekly participatory labs and weekly
homework, hosts a teaching framework, exercise sets and
labs, and a sandboxed student development environment.
Eighty incremental exercises based on recent security re-
search, and challenge projects, including one based on
real open-source applications, teach the major web appli-
cation vulnerabilities and defenses, in an encapsulated en-
vironment that allows students to experiment freely with-
out interfering with each other or with public networks. In
contrast to problems experienced with hands-on projects
used in previous years, student response to this platform
and its contained exercises has been remarkably positive.

1 Introduction

While traditional computer security threats remain an on-
going concern, web application security vulnerabilities
and attacks rose sharply over 2000-2005, eclipsed tradi-
tional system security vulnerabilities in 2006, and have
persisted as close to half of all vulnerabilities since (See
Figure 1). One reason that securing web applications
is complex is that the web application delivery platform
is complex: web applications are written in JavaScript,
PHP, and other languages, delivered using a stateless pro-
tocol over an insecure Internet, and rendered on varying
browsers over varying operating systems and an increas-
ing complex array of content-specific plug-ins.

Teaching web application security is challenging be-
cause of the inherent complexities of the web platform
and the rapidly changing nature of the field, with at least
65 new types of attacks every year since 2006 [5]. In ad-
dition, hands-on programming projects that require stu-
dents to find vulnerabilities and develop and test defenses
have proven difficult to deploy. While students can of-
ten experiment with some forms of client-side function-
ality, they have been previously limited to software that
is readily available for the specific computers that each of
them own. In addition, network-based experiments with
servers may cause one student’s activities to interfere with
others and university network administrators have been
uncomfortable with some of the network activity gen-
erated by hands-on security projects. We therefore de-
veloped a uniform, self-contained virtual-machine-based
environment that allows each student or student project
team to have their own isolated combination of browsers,
server, database, and network. Within this environment,
we have developed a series of project exercises, equal in
heft to textbook exercises for a semester-long university-
level course, that expose students to a full range of web
application security problems and solutions. While we
describe many exercises in this paper, we continue to de-
velop additional projects and anticipate that further dis-
tribution of our platform will allow others to contribute
demonstrations of other important concepts.

Webseclab is the product of more than 750 person-
hours of work. It is comprised of a LAMP (Linux,
Apache, MySQL, PHP) stack, a variety of developer
tools, and the three most popular browsers for the Linux
platform. Webseclab hosts, at localhost URLs, both a cus-
tom application utilizing focused exercises to teach top-
ics important to secure web programming, and a second
student development sandbox isolated from the exercise

1



1186

2793

1528

996

1275

1095

2000 1951

1531

1647

N
um

be
r o

f v
ul

ne
ra

bi
lit

ie
s

1000

2000

3000

2005 2006 2007 2008 2009

Evolution of the number of vulnerabilties by years

Web 
System 

Figure 1: Web application vulnerabilities versus system
vulnerabilities in VUPEN database

databases. The teaching system, with 10,000 custom lines
of PHP, is designed for student accessibility and interac-
tivity, featuring convenient access to reference resources
and instant feedback for exercise answers. Further, web-
seclab is up-to-date with current web application security
research, comprehensive of the major web vulnerabilities
and defenses, and encapsulated to allow student to exper-
iment freely without interfering with each other or any re-
sources external to the VM. Webseclab has received pos-
itive student response regarding its incremental exercises
and capstone challenges based on real open-source appli-
cations, suggesting the success of the approach. Anyone
currently interested in evaluating Webseclab may access
it at http://md5.stanford.edu/vm/.

The remainder of the paper is organized as follows: In
section 2, we introduce the Webseclab architecture and
discuss the rationale behind our choices. In section 3, we
discuss how we designed the exercises and how users in-
teract with them. Section 4 discusses a sample capstone
project based on an open-source web application, and sec-
tion 5 presents additional related work. Finally, in section
6 we reflect on lessons learned and discuss future work
based on the feedback of our students.

2 Architecture

2.1 VM and Application Hosting Stack
Webseclab is distributed as an entire LAMP (Linux,
Apache, MySQL, PHP) stack contained in a virtual ma-
chine (VM). The Webseclab software stack is illustrated
in Figure 2. The student-facing teaching framework is

Webseclab

Webseclab

Figure 2: Virtual machine stack

itself implemented as a MySQL+PHP web application.
While we could have chosen to host the Webseclab ap-
plication for students to access remotely, as in the Google
Jarlsberg project [9], we made the conscious decision to
distribute the lower layer hosting environment and an en-
tire VM along with the teaching application for several
reasons:

• Completeness. Web vulnerabilities extend beyond
the application layer to the lower layer of the stack.
For example, four of the Open Web Application Se-
curity Project (OWASP) Top Ten [11] web applica-
tion vulnerabilities originate in either server or cryp-
tographic layer errors. Injection vulnerabilities also
involve back-end server software beyond the the web
application language. Having an entire stack allows
us to include material for the security of these layers,
including SQL Injection and SSL configuration.

• Sandboxing. Hosting the security exercises, es-
pecially ones inviting students to attack vulnerable
code, on their individual VMs quarantines these at-
tacks from the public Internet. It also prevents indi-
vidual students from bringing down resources shared

2

http://md5.stanford.edu/vm/


140

224

302

511

1170

1220

5070

pl

do

cfm

jsp

asp

aspx

php

Figure 3: Google URL count for well known language
extensions (in millions)

by the entire class, allowing for a smoother course
experience.

• Uniformity. Packaging an identical software stack
(both server- and client-side) into the VM reduces
student concerns over compatibility between the en-
vironment in which they solve exercises and the en-
vironment used to grade them. In addition, pre-
loading a host of utility software such as IDEs,
browser-extensions, etc, simplifies student techni-
cal support and allows detailed, software specific in-
structions to be included in student tutorials.

We chose LAMP as the application stack for Webse-
clab mainly because it is a popular way to support PHP,
the predominant server-side web application language, as
illustrated in Figure 3. While some may regard PHP
as a contributory factor for certain vulnerabilities (e.g.,
SQL injection or poor session management), PHP is cor-
respondingly effective for demonstrating a wide range of
vulnerabilities, and as Figure 4 shows, there is little evi-
dence that alternative languages are more inherently more
secure.

2.2 Dual Hosting Environments
The LAMP stack of Webseclab contains two different
web application environments. The first environment
hosts the teaching framework and its exercise sets at a

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PHP ASP ASPX JSP CFM DO PL

Figure 4: Percent of websites with at least one serious
vulnerability, broken-out by language (Whitehat survey)

localhost URL (Figure 7). Student interaction with the
teaching framework is limited to accessing exercises us-
ing a browser interface. Any code that students write in
completing exercises must be entered via the browser (de-
tails in Section 3.2), and students are prevented from ac-
cessing the PHP source code of the exercises in the file
system via access control.

To support student code development (such as pro-
gramming projects) of a larger scale than exercises, Web-
seclab offers a second hosting environment accessible via
a different localhost url than the exercises. This environ-
ment hosts a full development sandbox including a direc-
tory where the student can write her own PHP files and
a MySQL database granting the student user full access.
The development sandbox database is also isolated from
the exercise databases using access control privileges, to
prevent student tampering with the exercise system.

2.3 Client-Side and Utility Software
In order to accommodate varying student preferences for
development environments, the VM includes a variety of
text editors, including gedit and emacs, as well as a full-
blown IDE (Netbeans). We also include the most popu-
lar browsers for the Linux platform (Firefox, Chrome and
Opera) to expose students to the challenging heterogene-
ity of web development. A range of browsers is useful, for
example, for illustrating the Same-Origin Policy, because
Chrome and Firefox support different policies than Opera

3



Virtual Machine

IDE

Sandbox

Firefox

WebSecLab

SQL via phpmyadmin

Categories

Exercise

Objective

Constraints

Pitch

Exercice 
rendered

Exercice 
code

Hints

Sync

Dashboard

Figure 5: Security lab functional representation

for cross-origin AJAX requests. Finally, the teaching
framework supplies a variety of Firefox extensions that
allow students to observe web site behavior, including the
Firebug, Firecookie, TamperData and UserAgentSwitcher
extensions.

2.4 Webseclab.com

For student data migration and backup from the VM,
Webseclab supports import and export of student data
from the exercise framework. This exports the exercise
progress of the student into a portable file that can be
loaded into another VM instance of Webseclab (for grad-
ing, for example). At Stanford, we have also set up
webseclab.com as a central repository for student data.
Each individual student establishes an account and peri-
odically uploads their progress. Webseclab.com also con-
tains functionality for the teaching staff to assign pro-
gramming projects, whose specifications will automati-

Figure 6: Student exercise progress via webseclab.com

cally be downloaded to student VMs. Teaching staff may
also use webseclab.com to monitor student progress (see
Figure 6) and each student may view their progress as
seen by course staff.

3 Exercise Design

In this section, we first describe our experience using
Webseclab to teach Secure Web Programming (CS241) at
Stanford [6]. Then, we describe the user-interface of the
exercise system and how we designed exercises to meet
our goals of comprehensiveness, timeliness, and student
interest.

3.1 Teaching Experience

Based on our experience in previous courses, we believe
that hands-on experience is the optimal way to teach the
concepts of web application security to students. There
is no better way to provide concrete understanding of the
challenge of secure web programming. In lieu of textbook
or homework, we designed a series of short, topical pro-
gramming exercises for the students to complete as a sup-
plement to the lectures, the majority of which invite stu-
dents to craft attacks against intentionally vulnerable code
in pages supplied by our teaching framework. When the
attack is successful, the teaching framework will automat-
ically provide positive feedback to the student, as shown
in Figure 7. By pairing this positive feedback with inten-
tionally focused exercises with short time-to-completion,
we provide the student a steady stream of encouragement

4



Figure 7: Overall page screenshot

that hopefully increases learning interest and accomplish-
ment.

All of our current exercises may be completed by the
students on their own time, under the guidance of auto-
matic feedback from the system. In addition, the exer-
cises also adapt well to a weekly “lab” setting, where one
or more instructors meet with a group of students for one-
to-two hours to complete the exercises. During the lab
sessions, we typically have very active student interaction,
with students often staying beyond the scheduled time to
engage the course staff. The session covering Cross-Site
Scripting, for example, is illustrative. In this session, we
ran a student contest using a set of XSS exercises covering
increasingly difficult filter-evasion techniques. The first
student to solve each level and demonstrate the solution to
the rest of the students was awarded points, with the over-
all winner receiving a small material prize. This contest
enjoyed the highest attendance of the term, ran 30 minutes
past the scheduled one-hour deadline, and caused students
to stay even after the prize had already been awarded to
compare solutions and complete the exercises they had
failed during the contest. The exercises are tied with the
lectures as the highest-rated part of the course, according
to mid-term student evaluations.

3.2 User Interface

The user interface of the exercise system, illustrated in
the Figure 7, organizes all relevant information for ease of
student access. The list of exercises appears as a menu in
the left pane of the teaching system, with some exercises
only becoming available after the completion of prereq-
uisites. Most exercises ask the student to attack vulner-
able code in pages supplied by the teaching framework,
while some exercises ask the student to insert defensive
code. The horizontal tabs provide views of the target site,
as rendered by the browser in the “Target website” pane
and in source-form in the “Target source” pane. The “Ob-
jectives” pane provides exercise objectives, such as us-
ing SQL injection to bypass authentication checks, any
constraints imposed by the teaching staff, such as disal-
lowed attack techniques, and references and hints on how
to solve the exercise.

Some exercises, such as the SQLI authentication by-
pass, may be completed simply by interacting with forms
on the rendered target page. If the interaction satisfies
the exercise-completion check (run in either Javascript or
PHP), the teaching framework automatically provides a
success message to the student. Other exercises, such as
creating Javascript timing attacks, validating cookie data

5



in server-side code, and crafting click-jacking pages, re-
quire the student to write code (in Javascript, PHP, or
HTML). Students enter code using a pop-up interface
generated by the “Enter Your Code” button, as shown
in Figure 7. When complete, the student code is in-
serted into the existing code of the target site at a lo-
cation selected by the teaching staff. The modified tar-
get site is then re-rendered by the browser, and exercise-
completion checks are run again for instant student feed-
back. Whether code entry is required or not, exercises
may be completed and relevant reference information ob-
tained on a single browser tab, for student convenience.

3.3 Exercise Goals

Student Interest. Aiming to maximize student interest
through careful “packaging”, we designed the exercises to
contain a small element of entertainment by conforming
each to a cohesive storyline of a fictitious Ninja clan. The
objectives of each exercise advances the interests of this
clan in some manner, such as gaining access to a rival
clan’s member website or executing a mission for a client.

Comprehensiveness. We aim to give students thorough
training in the most important web application security
topics by providing the most comprehensive set of exer-
cises of which we are aware. Table 1 presents the cate-
gories covered by our exercise set and the number of ex-
ercises in each category. The exercises begin by familiar-
izing the student with the teaching framework, Javascript,
and the Document Object Model (DOM), using the ”In-
troduction” and ”Browser Security” sets; they then illus-
trate the operations and limitations of the DOM Same Ori-
gin Policy (SOP) with “Mixed Content” exercises.

After the introductory sets, the teaching framework
offers training for high-incidence categories of web-
application vulnerabilities: Cross-Site Scripting (XSS),
Cross-Site Request Forgery (CSRF), SQL Injection
(SQLI), Incorrect User Authentication, Incorrect Session
Management, Phishing, Incorrect SSL Usage, Breaking
Javascript Isolation, and Cross Channel Scripting. These
exercise categories cover most topics considered impor-
tant by the security community: Table 1 shows that our
current set of 80 exercises cover 9 of the topics in the
OWASP Top 10. We plan to add exercises for Insecure

Figure 8: Capstone project

Direct Object Reference shortly as we build up the mock
database used in the teaching framework.

Timeliness. In addition to comprehensively covering top-
ics deemed important by the web security community,
we also want our exercises to reflect current research in
web application vulnerabilities and attacks. To this end,
we included exercises covering topics in cross-site re-
quest forgery [1], phishing and click-jacking protection
[12], Javascript mashup isolation [10], and cross-channel
scripting attacks against the web interfaces of consumer
devices [4], all of which are derived from recent academic
research published by the co-authors of this paper.

Webseclab also covers recent topics in browser secu-
rity through exercises about browser denial-of-service,
the SOP and also extension security. We feel it is im-
portant that students thoroughly understand the client-
side model of web security, and we plan to add more ad-
vanced browser security exercises that teach students how
browser defenses can mitigate server side vulnerabilities
such as click-jacking and XSS [2].

6



Table 1: Webseclab Exercises Covering OWASP Top 10

OWASP Top 10 Category E
xe

rc
is

es

In
tr

od
uc

tio
n

B
ro

w
se

rs
ec

ur
ity

M
ix

ed
C

on
te

nt

X
SS

C
SR

F

A
ut

he
nt

ic
at

io
n

Se
ss

io
n

Ph
is

hi
ng

Ja
va

sc
ri

pt
Is

ol
at

io
n

SQ
L

In
je

ct
io

n

SS
L

C
ro

ss
C

ha
nn

el

Injection X
Cross-Site Scripting X
Broken Authentication and Session Management X X
Insecure Direct Object References
Cross-Site Request Forgery X
Security Misconfiguration X X X
Insecure Cryptographic Storage X
Failure to restrict URL Access X X
Insufficient Transport Layer Protection X
Unvalidated Redirects And Forwards X X
Total Exercise Count 7 8 7 17 6 5 12 7 7 6 4 5

4 Projects in Webseclab

While most Webseclab exercises are narrowly focused on
a specific vulnerability stated in the exercise objective, we
also added longer programming projects and a capstone
vulnerability-audit project.

For the most-recent term, we developed three longer-
term programming projects to be completed by students
using the Webseclab sandboxed student-development en-
vironment [6]. These projects, to be completed over 2-
3 weeks, required students to build server-side code to
fingerprint each visitor, client- and server-side code in a
framework for exploiting XSS, and a browser extension
for detecting insecure web page configurations such as
passwords sent in the clear. We also graded these projects
in the Webseclab environment, which eliminated all cases
of incompatibility between development and grading en-
vironments, a problem which has occurred a few times
per term in the past. We feel that Webseclab can easily
support other web-security related programming projects
of similar heft.

Webseclab’s capstone vulnerability audit project was
created by injecting vulnerabilities into a well-known
open source application. As shown in figure 8, we de-

veloped a vulnerable version of the popular e-commerce
application: Zen-cart [14]. We used Zen-cart to create a
fake “ninja shop” (See Fig. 8) that contains vulnerabilities
from all categories available in the VM, including XSS,
CSRF and SQL injection. It also has insecure cookies, in-
secure authentication and predictable session tokens. We
used this real application as a final take-home exam for
our class this year and plan to roll out more capstone ex-
ercises based on popular open source application such as
Mediawiki, Wordpress and phpBB, with various degree
of difficulty. We may also leverage our study of vulner-
abilities in past versions of these sites, and the methods
needed to detect them [3].

5 Related work

Related work on web security education has followed one
of two different models: VM environments executed on
the student’s hardware, or hosted web sites with embed-
ded vulnerabilities—open to experimentation by students.

While VMs have been used for several years for stu-
dent education, including security [8], web security con-
tent has only now started to appear, as far as we are aware.

7



Pace University’s NSF SWEET project [13] has goals that
are conceptually similar to ours. However, the SWEET
VMs available for both Linux and Windows are not fo-
cused on web security. Instead, they offer a variety of
modules, one of which is on web security. In contrast,
the WebSecLab VM is dedicated to web application se-
curity, offers an integrated and focused environment, and
leverages recent web security research. In part, this is
made possible by the Webseclab VM, which also serves
as the development environment for the staff, allowing for
straight-forward content development, testing, and addi-
tion.

Hosted web services are another natural way to offer
web security education. In fact, remotely connecting to
web services might be a more “natural” way to learn about
security on the open Internet. The Jarlsberg Web Appli-
cation Exploits and Defenses codelab [9] offers a wide
range of exercises in a web format, accessed from the con-
venience of the user’s browser. When it comes to offer-
ing the best possible coverage of security topics, we have
found several difficulties with the hosted approach. First,
not all of the current web security topics can be covered
without significantly impacting the user’s OS: in some of
the exploits the browser can become effectively unusable,
requiring a restart; in others, a specific browser or exten-
sion must be used, which would require the user to install
new, possibly vulnerable software on their primary ma-
chine. Second, some areas of web security are simply not
possible to cover using only a web interface. One such
area is cross-channel scripting, where access to a diverse
set of protocols (outside HTTP) is required. Third, from a
student workflow perspective, having a VM allows learn-
ing without requiring non-stop access to the Internet.

The report in [7] outlines the strengths and weaknesses
of a VM-based environment, specifically in teaching com-
puter security. We believe that for web application secu-
rity, a VM is particularly attractive: web vulnerabilities
are inherently client-server, thus easy to abstract into a
VM. At the same time a VM reduces the impact on the
user’s primary OS, thus a core strength described in [7] is
preserved.

6 Lessons Learned
In this paper, we have presented Webseclab, a virtual-
machine-based web application security student labora-
tory based on open source technologies, which we believe
is a comprehensive, up-to-date, and compelling teaching
platform. We are planning to incorporate feedback from
our spring-quarter course into Webseclab and will release
an improved version for free to the public this summer.

The experience of running similar security courses in
previous terms taught us the importance of encapsulation
in hands-on projects. By using the VM to isolate student
users from one another and to prevent their attacker-like
traffic from reaching public networks, Webseclab made
this course a much smoother experience than previous
editions for students, course staff and also Stanford’s net-
work administrators. In addition, the hosting stack pro-
vided by Webseclab allowed us the ability to exercise
lower-layer vulnerabilities, to conveniently show students
exercise source code when helpful, and to ask students to
write defense code as exercise solutions. We thus feel the
inclusion of the entire host stack was a valuable feature.

We also learned from midterm student evaluations that
they enjoyed the hands-on experience of the exercises and
also liked, in principle, the convenience provided by the
VM and the user-interface of the exercise system. We
found achieving user convenience in both the UI and the
VM to be a non-trivial exercise, as we devoted thou-
sands of lines code to smoothing out the teaching ap-
plication and experimented with nearly 20 Guest-OS and
VM-player combinations to optimize factors such as sta-
bility, distribution-size, length of support-term, and per-
formance. Furthermore, we are continuing to improve the
user-interface for greater intuitiveness in response to stu-
dent feedback.

We feel that, even given the present content of Webse-
clab, the continuing process of keeping the exercise top-
ics up-to-date with the latest vulnerabilities and defenses
will be a challenge. To this end, we have designed an
administrator interface to the Webseclab application that
will hopefully ease the process of adding newly relevant
exercises.

Finally, given the way our students learn to adopt the
perspective of an attacker, we find it difficult to com-
pletely secure our auto-grading system against forgery,
since student code often has name-space access in PHP

8



or Javascript to functions that signal exercise completion.
While we have not encountered any actual instances of
forgery, our solution is two-pronged: Webseclab records
all submitted student answers, allowing for later evalua-
tion on an instructor-controlled VM, and in conjunction
with discussion of ethical use of security knowledge, we
emphasize an honor code that stresses ethical use of the
teaching environment and its software functions.

References
[1] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses

for cross-site request forgery. In 15th ACM Conference on
Computer and Communications Security, 2008. 6

[2] D. Bates, A. Barth, and C. Jackson. Regular expressions
considered harmful in client-side xss filters. In 19th Inter-
national World Wide Web Conference, 2010. 6

[3] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of
the art: Automated black-box web application vulnerabil-
ity testing. In IEEE Symp. on Security and Privacy, 2010.
7

[4] H. Bojinov, E. Bursztein, and D. Boneh. Xcs: Cross chan-
nel scripting and its impact on web applications. In 16th
ACM Conf. on Computer and Communications Security,
2009. 6

[5] E. Bursztein and B. Gourdin. Web security trends
2010. http://www.inftoint.com/security/
web-security-trends-2010/, May 2010. 1

[6] Cs241: Secure web programming. https:
//courseware.stanford.edu/pg/courses/
81544. 4, 7

[7] A. Davidson, J. de La Puente Martinez, and M. Huber. A
swot analysis of virtual laboratories for security education.
9th IFIP World Conference on Computers in Education,
2009. 8

[8] J. Hu, D. Cordel, and C. Meinel. A virtual laboratory for it
security education. EMISA 2004 Informationssysteme im
E-Business und E-Government, 2004. 7

[9] Web application exploits and defenses. http://
jarlsberg.appspot.com/. 2, 8

[10] S. Maffeis, J. C. Mitchell, and A. Taly. Object capabili-
ties and isolation of untrusted web applications. In IEEE
Symposium on Security and Privacy, 2010. 6

[11] Owasp top ten. http://www.owasp.org/index.
php/Category:OWASP_Top_Ten_Project. 2

[12] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson.
Busting frame busting: a study of clickjacking vulnera-
bilities at popular sites. In IEEE Oakland Web 2.0 Security
and Privacy Workshop, 2010. 6

[13] L. Tao and L.-C. Chen. Improving web security educa-
tion with virtual labs and shared course modules. 7th An-
nual Research Day, Seidenberg School of Computer Sci-
ence and Information Systems, Pace University, 2010. 8

[14] Z. Ventures. zen cart the art of e-commerce. http://
www.zen-cart.com/. 7

9

http://www.inftoint.com/security/web-security-trends-2010/
http://www.inftoint.com/security/web-security-trends-2010/
https://courseware.stanford.edu/pg/courses/81544
https://courseware.stanford.edu/pg/courses/81544
https://courseware.stanford.edu/pg/courses/81544
http://jarlsberg.appspot.com/
http://jarlsberg.appspot.com/
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.zen-cart.com/
http://www.zen-cart.com/

	1 Introduction
	2 Architecture
	2.1 VM and Application Hosting Stack
	2.2 Dual Hosting Environments
	2.3 Client-Side and Utility Software
	2.4 Webseclab.com

	3 Exercise Design
	3.1 Teaching Experience
	3.2 User Interface
	3.3 Exercise Goals

	4 Projects in Webseclab
	5 Related work
	6 Lessons Learned

